

Implications from Research on Lymphoma and Immune System Diseases in Nigeria

Aloy Chinwe Okechukwu

Department of Medical Laboratory Science, Faculty of Health Sciences, Imo State University, Owerri, Nigeria

Abstract

Nigeria, with its unique genetic diversity and high burden of infectious diseases, presents a distinctive landscape for studying hematological malignancies, particularly lymphomas. The interplay between immune system disorders and lymphomagenesis in this population remains poorly understood, necessitating the application of advanced single-cell technologies to unravel the complex mechanisms involved. This comprehensive review explores the current understanding of lymphoma epidemiology and molecular subtypes in Nigeria, examines the intricate relationships between various immune disorders and lymphoma development, and discusses how single-cell sequencing (SCS) technologies can transform diagnostic precision, prognostic assessment, and therapeutic strategies. We highlight the significant role of HIV-mediated immune dysregulation, iatrogenic immunosuppression, and chronic infections in shaping the lymphoma spectrum in Nigeria. The implementation of SCS approaches offers unprecedented opportunities to dissect tumor heterogeneity, characterize tumor microenvironment composition, and identify novel therapeutic targets tailored to the Nigerian population. Despite challenges related to infrastructure and technical expertise, strategic integration of single-cell technologies into Nigeria's research landscape holds promise for advancing precision oncology and improving clinical outcomes for lymphoma patients. This article provides a roadmap for future research directions and collaborative opportunities that could significantly enhance our understanding of lymphomagenesis in this unique population.

Keywords

Lymphoma, Immune System Disorders, Single-Cell Sequencing, Hiv, Tumor Microenvironment, Precision Medicine, Hematological Malignancies

1. Introduction

Nigeria, with an estimated population exceeding 200 million people, represents one of Africa's most significant arenas for hematological research, yet remains critically understudied in the context of lymphoid malignancies. The country's unique genetic diversity, combined with a high burden of infectious diseases and immune disorders, creates a distinctive landscape for lymphomagenesis that warrants thorough investigation. Lymphomas represent a substantial health burden in Nigeria, with diffuse large B-cell lymphoma (DLBCL) being the most common subtype, characterized by particular aggressiveness and frequent association with immunosuppressive conditions. The intricate relationship between immune system dysfunction and lymphoma development presents both challenges and opportunities for advancing our understanding of disease pathogenesis in this population.

The application of single-cell sequencing (SCS) technologies in Nigeria holds exceptional promise for unraveling the complex interplay between immune dysfunction and lymphomagenesis. SCS enables researchers to dissect tumor heterogeneity, characterize tumor microenvironment composition, and identify rare cell populations that may drive treatment resistance or disease progression. This approach has revolutionized our understanding of hematopoietic systems by allowing unprecedented resolution in examining cellular diversity, developmental trajectories, and molecular networks. In the context of Nigeria's unique disease spectrum, SCS technologies could provide critical insights into the distinctive features of lymphomas in this population, potentially revealing novel therapeutic targets and biomarkers.

The purpose of this comprehensive review is to synthesize current knowledge on lymphoma and immune system disorders in Nigeria, with a specific focus on how SCS approaches can advance our understanding of disease biology, improve diagnostic precision, and inform therapeutic development. We will examine the epidemiological patterns of lymphoma in Nigeria, explore the complex relationships between various immune disorders and lymphoma development, discuss the technical considerations for implementing SCS in Nigeria's research landscape, and propose future directions for integrating these advanced technologies into both research and clinical practice. By providing this overview, we aim to stimulate further research and collaboration in this promising field, ultimately contributing to improved outcomes for Nigerian patients with lymphoid malignancies.

2. The Burden of Lymphoma in Nigeria: Epidemiological and Molecular Perspectives

2.1 Epidemiological Landscape

The accurate determination of lymphoma incidence in Nigeria faces challenges related to diagnostic capabilities, cancer registration systems, and healthcare access. Available data from hospital-based registries and regional studies indicate that lymphomas represent a significant proportion of hematological malignancies in Nigeria, with non-Hodgkin lymphomas (NHL) predominating over Hodgkin lymphomas. DLBCL constitutes the most frequently diagnosed subtype, accounting for approximately 60-70% of all NHL cases in series reported from Nigerian tertiary institutions. The age distribution of lymphoma patients in Nigeria demonstrates a notable predominance in younger age groups compared to Western populations, with a median age of diagnosis ranging from 45 to 55 years, approximately a decade younger than typically observed in high-income countries [1].

Regional variations in lymphoma patterns across Nigeria's diverse geographical zones remain incompletely characterized, though emerging data suggest potential differences in subtype distribution and clinical presentation. Urban centers with tertiary healthcare facilities, such as Lagos, Ibadan, and Abuja, report higher case numbers, though this likely reflects diagnostic capabilities rather than true incidence variation. The ratio of NHL to Hodgkin lymphoma in Nigeria approximates 4:1, contrasting with the nearly 1:1 ratio observed in some Western populations, possibly reflecting differential environmental exposures, infectious triggers, or genetic susceptibility factors unique to the Nigerian population [2].

Table 1. Epidemiological Features of Lymphoma in Nigeria Based on Available Literature

Parameter	Characteristics in Nigeria	Comparison with Western Populations
Median Age at Diagnosis	45-55 years	55-65 years
NHL:HL Ratio	Approximately 4:1	Approximately 1.5:1
Most Common Subtype	Diffuse Large B-cell Lymphoma (DLBCL)	Diffuse Large B-cell Lymphoma (DLBCL)
HIV-Associated Cases	30-40% of DLBCL	5-10% of DLBCL
Advanced Stage at Presentation	60-70% of cases	40-50% of cases

Table 1: This table illustrates that lymphoma patients in Nigeria are younger, have a higher proportion of non-Hodgkin's lymphoma, are more strongly associated with HIV, and have a higher rate of late detection. These differences suggest that the local lymphoma epidemiology is closely related to immune system disorders, high infection rates, and limitations in the healthcare system.

Therefore, Nigeria needs to strengthen the application of **early screening, HIV co-management, and molecular diagnostic technologies (such as single-cell sequencing)** to improve clinical outcomes.

2.2 Molecular Subtypes and Special Characteristics

Molecular characterization of lymphomas in Nigeria remains limited but is steadily expanding with improving diagnostic capabilities. DLBCL in Nigeria demonstrates a predominance of the non-germinal center B-cell (non-GCB) subtype, which is associated with less favorable prognosis compared to the GCB subtype. This biological distinction may partially explain the aggressive clinical behavior and inferior outcomes observed in Nigerian DLBCL patients. The standard immunochemotherapy regimen for DLBCL, R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone), has demonstrated variable efficacy in the Nigerian population, with response rates generally lower than those reported in international studies, potentially reflecting the predominance of high-risk molecular features, including BCL2 and MYC alterations [3].

The high prevalence of HIV infection in Nigeria significantly influences the molecular landscape of lymphomas, with HIV-associated cases frequently demonstrating distinct genetic features and more aggressive clinical behavior. Epstein-Barr virus (EBV) co-infection is detected in a substantial proportion of HIV-associated lymphomas, contributing to pathogenesis through the expression of viral oncproteins that drive malignant transformation and proliferation. Recent studies have begun to elucidate the unique genetic alterations in HIV-associated lymphomas in Nigeria, though comprehensive genomic analyses remain limited.

The phenomenon of other iatrogenic immunodeficiency-associated lymphoproliferative disorders (OIIA-LPDs) represents another important aspect of lymphoma development in the context of immune dysfunction. These disorders, which can emerge in patients receiving immunosuppressive therapies for various conditions, highlight the critical role of immune surveillance in controlling malignant B-cell clones [4]. The complex interplay between therapeutic immunosuppression, viral infections, and lymphomagenesis creates a distinctive pathogenic milieu in the Nigerian population that warrants further investigation through single-cell approaches.

3. Immune System Disorders and Lymphoma Development in Nigeria

3.1 HIV-Associated Immunosuppression

Nigeria has one of the world's largest HIV-infected populations, with approximately 1.9 million people living with the virus, creating a substantial at-risk population for HIV-associated lymphomas. The fundamental mechanism underlying lymphomagenesis in HIV infection involves the profound depletion and functional impairment of CD4+ T-cells, which normally provide critical immune surveillance against malignant B-cell clones. The progressive loss of CD4+ T-cells, coupled with chronic immune activation and dysregulated cytokine production, creates a permissive environment for the emergence and expansion of malignant lymphoid populations [5]. HIV-infected individuals in Nigeria develop lymphomas at a significantly higher frequency than the general population, with these malignancies often presenting at advanced stages and exhibiting extranodal involvement.

The spectrum of HIV-associated lymphomas in Nigeria differs somewhat from Western patterns, with a higher proportion of DLBCL and Burkitt lymphoma, and a lower incidence of primary central nervous system lymphoma. This variation may reflect differences in underlying oncogenic virus prevalence, genetic factors, or environmental cofactors unique to the Nigerian population. Antiretroviral therapy (ART) availability has expanded substantially in Nigeria, yet many patients still present with advanced HIV disease, contributing to the persistent high incidence of HIV-associated lymphomas. The integration of HIV and oncology services in Nigeria represents a critical strategy for improving outcomes through earlier detection, timely intervention, and coordinated care management [6].

Table 2. Immune Disorders Associated with Lymphoma Development in Nigeria

Immune Disorder	Associated Lymphoma Types	Proposed Mechanisms	Prevalence in Nigeria
HIV Infection	DLBCL, Burkitt lymphoma, Primary effusion lymphoma	CD4+ T-cell depletion, chronic immune activation, impaired immune surveillance, oncogenic virus co-infection	High (1.9 million people living with HIV)
Iatrogenic Immunosuppression	DLBCL, Hodgkin lymphoma, PTLD	Reduced immune surveillance, impaired antiviral immunity, direct mutagenic effects of immunosuppressive drugs	Increasing with expanded transplant and rheumatology services
Autoimmune Disorders	DLBCL, MALT lymphoma	Chronic antigen stimulation, inflammatory cytokine milieu, immunosuppressive treatments	Underdiagnosed and underreported

Table 2: This table indicates that the high incidence of lymphoma in Nigeria is closely related to immune dysfunction, with HIV infection having the most significant impact. Different immune disorders promote the malignant transformation of B cells through different mechanisms (immune surveillance defects, viral co-infection, and alterations in the inflammatory microenvironment). Therefore, promoting improved HIV management, standardizing immunosuppressive therapy, and strengthening autoimmune disease testing are key public health strategies for reducing the risk of lymphoma.

3.2 Iatrogenic Immunosuppression and Lymphoproliferative Disorders

The expanding availability of transplantation procedures and immunomodulatory therapies in Nigeria has led to increased recognition of iatrogenic immunodeficiency-associated lymphoproliferative disorders (OIIA-LPDs). These conditions represent a spectrum of lymphoid proliferations ranging from polyclonal hyperplasias to overt lymphomas that occur in the setting of therapeutic immunosuppression. A notable case report from Nigeria described a 5-year-old boy with T-lymphoblastic lymphoma who developed an EBV-positive DLBCL during maintenance chemotherapy, illustrating the phenomenon of sequential lymphomas in the context of iatrogenic immunosuppression. This case highlights how chemotherapy-induced immune dysfunction can facilitate the emergence of secondary lymphomas, particularly those associated with oncogenic viruses like EBV [7].

The pathogenesis of OIIA-LPDs involves multiple interconnected mechanisms, including impaired immune surveillance against malignant clones, reduced control of oncogenic viruses, and direct genotoxic effects of certain immunosuppressive agents. In the Nigerian context, where background rates of viral infections are high and immune systems may be challenged by multiple pathogens, the risk of OIIA-LPDs may be particularly elevated. The management of these disorders presents unique challenges, requiring careful balancing of immunosuppression reduction with antilymphoma therapy, often in resource-constrained settings where treatment options may be limited [8].

3.3 Other Immune Disorders and Lymphoma Risk

Beyond HIV and iatrogenic immunosuppression, other immune system disorders contribute to lymphoma risk in Nigeria, though their prevalence and impact remain incompletely characterized. Autoimmune conditions, chronic inflammatory disorders, and primary immunodeficiencies all predispose to lymphoid malignancies through mechanisms involving chronic immune stimulation, impaired immune regulation, and defective tumor surveillance. The management of these conditions in Nigeria faces challenges related to diagnostic limitations, limited access to specialized care, and inadequate availability of targeted therapies.

The relationship between sickle cell disease (SCD) and lymphoma represents another area of potential interest in Nigeria, which has the world's highest burden of SCD. While no direct epidemiological link has been firmly established between SCD and lymphoma, the chronic immune dysregulation, functional asplenia, and recurrent infections characteristic of SCD could theoretically influence lymphoma risk and presentation. Furthermore, the immunosuppressive effects of certain treatments used in SCD management might contribute to impaired antitumor immunity. Research specifically examining the potential connections between SCD and lymphoid malignancies in Nigeria is warranted to elucidate any meaningful associations [9].

4. Single-Cell Sequencing Technologies: Principles and Applications in Lymphoma Research

4.1 Technical Foundations of Single-Cell Sequencing

Single-cell sequencing technologies have revolutionized biomedical research by enabling the examination of individual cells' genomic, transcriptomic, and epigenomic landscapes, revealing unprecedented details about cellular heterogeneity and complexity. The fundamental principle underlying SCS is the isolation and analysis of individual cells, bypassing the limitations of bulk tissue analysis that averages signals across diverse cell populations. The technical workflow for SCS encompasses several critical steps: single-cell isolation and capture, nucleic acid extraction and amplification, library preparation, high-throughput sequencing, and sophisticated bioinformatic analysis.

For single-cell genomics, whole-genome amplification (WGA) techniques such as multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) are employed to amplify the minute quantities of DNA present in individual cells. Single-cell transcriptomics typically utilizes methods like Smart-seq2 for full-length transcript coverage or droplet-based approaches for high-throughput analysis of thousands of cells simultaneously [10]. Emerging single-cell epigenomic methods, including scATAC-seq and scCUT&Tag, enable the profiling of chromatin accessibility and histone modifications at single-cell resolution, providing insights into the regulatory landscape that governs gene expression.

The application of these technologies to lymphoma research is particularly powerful given the extensive heterogeneity characteristic of lymphoid malignancies. Lymphomas typically comprise diverse subclones with distinct genetic and phenotypic features that evolve under selective pressures, including therapy. SCS approaches can dissect this complexity by identifying rare subpopulations, tracing evolutionary trajectories, and characterizing the diverse cellular components of the tumor microenvironment that influence disease behavior and treatment response.

4.2 Applications in Lymphoma Heterogeneity and Evolution

SCS has dramatically advanced our understanding of lymphoma heterogeneity and clonal evolution. In DLBCL, single-cell RNA sequencing (scRNA-seq) has revealed previously unappreciated diversity in malignant B-cell states, identifying distinct transcriptional programs associated with cell-of-origin subtypes, proliferation signatures, and potential drug resistance mechanisms. These approaches have also illuminated the complex relationships between genetic alterations and transcriptional phenotypes, demonstrating how specific mutations manifest heterogeneously across cellular subpopulations within individual tumors.

The investigation of clonal evolution in lymphomas using SCS has provided critical insights into therapeutic resistance and relapse mechanisms. By analyzing sequential samples from patients before and after treatment, researchers can track the expansion of resistant subclones, identify the molecular features underlying treatment failure, and potentially develop strategies to prevent relapse. In the context of Nigerian lymphomas, which often demonstrate aggressive behavior and poor outcomes, understanding these evolutionary dynamics could inform more effective therapeutic approaches tailored to the specific biological features prevalent in this population [11].

The application of SCS to liquid biopsies represents another promising avenue for lymphoma management, particularly in resource-constrained settings like Nigeria where repeated tissue biopsies may be challenging. The detection and molecular characterization of circulating tumor DNA (ctDNA) and circulating lymphoma cells in peripheral blood using sensitive single-cell approaches could enable minimally invasive disease monitoring, early relapse detection, and real-time assessment of treatment response. While these applications are still emerging in high-income countries, their potential implementation in Nigeria would represent a significant advance in lymphoma care.

4.3 Tumor Microenvironment Analysis

The lymphoma tumor microenvironment (TME) comprises diverse non-malignant cell types, including T cells, macrophages, dendritic cells, natural killer cells, and stromal elements, that collectively influence disease pathogenesis

and treatment response. ScRNA-seq has enabled comprehensive characterization of these cellular components, revealing complex interaction networks and functional states that correlate with clinical outcomes. In DLBCL, specific TME features, such as the composition and functional orientation of tumor-infiltrating T cells and macrophages, have been associated with response to immunochemotherapy and survival.

In the context of HIV-associated lymphomas in Nigeria, SCS approaches could elucidate how HIV-induced immune alterations shape the TME and influence disease behavior. HIV infection causes profound changes in T-cell subsets, monocyte/macrophage populations, and overall immune homeostasis that likely create a distinctive TME milieu permissive for lymphoma development and progression. Understanding these HIV-specific TME features could identify novel therapeutic targets for this important lymphoma subgroup in Nigeria [12].

The application of multimodal SCS approaches, which simultaneously measure multiple molecular modalities (e.g., transcriptome, surface protein expression, and chromatin accessibility) in the same single cells, offers particularly powerful opportunities for dissecting the complex biology of lymphomas in Nigeria. These integrated methods provide more comprehensive cellular portraits, enabling deeper insights into the relationships between genetic alterations, transcriptional programs, and phenotypic features that drive lymphoma pathogenesis.

5. Research Challenges and Future Directions in Nigeria

5.1 Laboratory Infrastructure and Technical Capacity

The implementation of SCS technologies in Nigeria faces substantial challenges related to laboratory infrastructure, technical expertise, and operational sustainability. The core requirements for single-cell research include specialized equipment for cell sorting and isolation, library preparation, next-generation sequencing, and sophisticated computational resources for data analysis and storage. Currently, limited availability of these advanced technologies within Nigeria necessitates international collaborations or outsourcing of specific technical steps, which increases costs, introduces logistical complexities, and may delay research progress [13].

The maintenance of SCS platforms in Nigeria's challenging environment, with frequent power fluctuations, variable temperature control, and limited access to specialized reagents, presents additional practical obstacles. Sustainable operation requires stable electricity (often through backup generators or uninterruptible power supplies), reliable cold chain management for reagent storage, and consistent supply chains for consumables. The development of locally adapted protocols, establishment of equipment maintenance contracts, and creation of specialized core facilities with dedicated technical support represent potential strategies for overcoming these infrastructure limitations.

Building technical expertise represents another critical challenge for advancing single-cell research in Nigeria [14]. The sophisticated nature of SCS technologies demands specialized training in experimental design, sample processing, quality control, and data interpretation. Currently, a limited number of Nigerian researchers possess comprehensive experience with these advanced methodologies, creating a bottleneck for expanding research capacity. Strategic investments in training programs, fellowship opportunities, and hands-on workshops could help develop this expertise, while deliberate efforts to retain skilled researchers in Nigeria would prevent brain drain and strengthen the local research ecosystem.

5.2 Strategic Research Priorities and Collaborative Models

Despite the challenges, significant opportunities exist to advance lymphoma research in Nigeria through strategic prioritization and collaborative models. Initial research efforts could focus on well-characterized lymphoma subtypes with particular relevance to the Nigerian population, such as HIV-associated DLBCL and Burkitt lymphoma, employing targeted SCS approaches to address specific biological questions. These focused studies could yield important insights while building technical capacity and establishing foundational methodologies for more comprehensive investigations.

The development of collaborative networks represents a crucial strategy for advancing single-cell research in Nigeria. Partnerships between Nigerian institutions and international centers with established expertise in SCS technologies could facilitate knowledge transfer, resource sharing, and coordinated research efforts. These collaborations could take various forms, including twinning programs, joint grant applications, shared biorepositories, and virtual research networks that leverage complementary strengths and resources. Successful models would ensure equitable partnerships, capacity building for Nigerian researchers, and alignment with local research priorities and health needs.

The integration of SCS findings with clinical data represents another important priority for future research in Nigeria. By correlating molecular features with treatment responses and outcomes in Nigerian lymphoma patients, researchers can identify biologically and clinically relevant biomarkers that could guide therapeutic decisions and improve patient management. These translational efforts would benefit from prospective study designs, standardized clinical data collection, and integration with existing cancer registries to ensure comprehensive follow-up and outcome assessment [15].

Table 3. Potential Applications of Single-Cell Sequencing in Nigerian Lymphoma Research

Research Application	Key Questions Addressable	Potential Impact on Patient Care
Tumor Heterogeneity Mapping	What subclonal architectures underlie aggressive behavior? How do resistant populations emerge?	Informed combination therapies targeting multiple subclones
Tumor Microenvironment Characterization	How does HIV infection reshape the lymphoma microenvironment? What immune evasion mechanisms are operative?	Immunotherapy selection and combination strategies
Lymphomagenesis Tracing	What are the precursor states and evolutionary pathways? How do viral infections drive transformation?	Early detection and interception strategies
Therapeutic Response Monitoring	What cellular changes predict treatment success or failure? How does the ecosystem adapt to therapy?	Adaptive treatment approaches based on minimal residual disease detection

Table3: This table illustrates four key applications of single-cell sequencing in lymphoma research and demonstrates its potential in the Nigerian clinical setting: 1. Facilitating precision medicine; 2. Improving treatment options; 3. Increasing early detection rates; 4. More effectively monitoring treatment response. It also outlines the potential research applications of single-cell sequencing in Nigerian lymphoma research, addressing key questions and its potential impact on patient care.

5.3 Ethical Considerations and Resource Allocation

The implementation of advanced genomic technologies like SCS in Nigeria raises important ethical considerations that warrant careful attention. Informed consent processes must ensure that participants understand the nature of genomic research, potential implications for themselves and family members, data sharing arrangements, and confidentiality protections. Community engagement approaches can help build trust, address concerns, and ensure that research priorities align with local health needs and values. The development of robust ethical oversight frameworks, responsive to Nigerian cultural contexts, represents an essential foundation for responsible single-cell research [16].

Resource allocation decisions regarding SCS in Nigeria's constrained healthcare system require thoughtful consideration of opportunity costs and potential benefits. While these technologies currently represent a significant investment, strategic implementation focused on high-impact research questions could yield discoveries with substantial clinical implications. Cost-reduction strategies, such as leveraging decreasing sequencing costs, developing shared core facilities, and focusing on targeted approaches rather than comprehensive analyses, could enhance accessibility and sustainability. The gradual integration of findings into clinical practice through biomarker development and therapeutic target identification could eventually justify the initial investment through improved patient outcomes.

Capacity building extending beyond technical expertise to include bioinformatics and data science represents another critical consideration. The analysis of SCS data requires sophisticated computational skills, statistical knowledge, and bioinformatic capabilities that are currently in short supply in Nigeria. Investments in computational infrastructure, training programs in bioinformatics, and development of analytical pipelines adapted to the specific research questions and population characteristics relevant to Nigeria would strengthen the overall research ecosystem and ensure that data generated can be fully exploited for scientific and clinical insights [17].

6. Conclusion

The study of lymphomas in Nigeria through the lens of single-cell technologies represents a promising frontier in cancer research with potential to significantly advance our understanding of disease biology and improve patient outcomes. The unique interplay between immune system disorders, particularly HIV infection, and lymphomagenesis in Nigeria creates a distinctive disease context that warrants detailed investigation using advanced molecular approaches. SCS offers unprecedented resolution for dissecting tumor heterogeneity, characterizing microenvironmental interactions, and elucidating evolutionary dynamics that underpin treatment response and resistance.

The implementation of SCS technologies in Nigeria faces substantial challenges related to infrastructure, expertise, and resources, yet strategic approaches focused on priority research questions, collaborative models, and gradual capacity building can overcome these barriers. Initial research efforts should concentrate on lymphoma subtypes with particular significance in Nigeria, such as HIV-associated DLBCL and Burkitt lymphoma, employing targeted SCS approaches to address specific biological and clinical questions. The integration of molecular findings with clinical data will be essential for translating research insights into improved diagnostic, prognostic, and therapeutic strategies.

Looking forward, the evolving landscape of single-cell technologies, with increasing throughput, decreasing costs, and expanding multimodal capabilities, promises to further enhance their applicability in Nigeria. The development of more robust and portable platforms could eventually facilitate wider implementation in resource-constrained settings, while computational advances may enable more efficient data analysis and interpretation. Through strategic investments, collaborative partnerships, and focused research efforts, Nigeria can position itself at the forefront of single-cell research in hematological malignancies, ultimately contributing to reduced lymphoma burden and improved survival for affected individuals in this unique population.

References

- [1] Zinzani, P. L., et al. (2023). ROSEWOOD: A Phase II Randomized Study of Zanubrutinib Plus Obinutuzumab Versus Obinutuzumab Monotherapy in Patients With Relapsed or Refractory Follicular Lymphoma. *Journal of Clinical Oncology*, *41*(?), ?. <https://doi.org/10.1200/JCO.23.00775>
- [2] Adams, B., Lazarchick, J., & Medina, A. M. (2010). Iatrogenic immunodeficiency-associated lymphoproliferative disease of the Hodgkin lymphoma-like variant in a patient treated with mycophenolate mofetil for autoimmune hepatitis. *American Journal of Hematology*, 85(8), 627–629. <https://doi.org/10.1002/ajh.21753>
- [3] Akarolo-Anthony, S.N., Ogundiran, T.O. & Adebamowo, C.A. Emerging breast cancer epidemic: evidence from Africa. *Breast Cancer Res* 12 (Suppl 4), S8 (2010). <https://doi.org/10.1186/bcr2737>
- [4] Alizadeh, A., Eisen, M., Davis, R. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. *Nature* 403, 503–511 (2000). <https://doi.org/10.1038/35000501>
- [5] Basso, K., Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. *Nat Rev Immunol* 15, 172–184 (2015). <https://doi.org/10.1038/nri3814>
- [6] Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates. *CA: A Cancer Journal for Clinicians*, 68(6), 394–424. <https://doi.org/10.3322/caac.21492>
- [7] Chinien, J., & Shearer, W. T. (2010). Secondary immunodeficiencies, including HIV infection. *Journal of Allergy and Clinical Immunology*, 125(2), S195–S203. <https://doi.org/10.1016/j.jaci.2009.08.040>
- [8] Cibulskis, K., Lawrence, M., Carter, S. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. *Nat Biotechnol* 31, 213–219 (2013). <https://doi.org/10.1038/nbt.2514>
- [9] Evans DG, Woodward ER, Bajalica-Lagercrantz S, Oliveira C, Frebourg T. Germline TP53 Testing in Breast Cancers: Why, When and How? *Cancers*. 2020; 12(12):3762. <https://doi.org/10.3390/cancers12123762>
- [10] Singh-Moodley, A., Ismail, H., & Perovic, O. (2020). Molecular diagnostics in South Africa and challenges in the establishment of a molecular laboratory in developing countries. *The Journal of Infection in Developing Countries*, 14(03), 236–243. <https://doi.org/10.3855/jidc.11779>
- [11] Lenz, G., & Staudt, L. M. (2010). Aggressive lymphomas. *New England Journal of Medicine*, 362(15), 1417–1429. <https://doi.org/10.1056/NEJMra0807082>
- [12] Molyneux, E. M., Rochford, R., Griffin, B., et al. (2012). Burkitt's lymphoma. *Lancet*, 379(9822), 1234–1244. [https://doi.org/10.1016/S0140-6736\(11\)61177-X](https://doi.org/10.1016/S0140-6736(11)61177-X)
- [13] Alderton, G. Modifying MYC expression. *Nat Rev Cancer* 11, 627 (2011). <https://doi.org/10.1038/nrc3132>
- [14] Mohammedi, L., Doula, F. D., Mesli, F., & Senhadji, R. (2019). Cyclin D1 overexpression in Algerian breast cancer women: correlation with CCND1 amplification and clinicopathological parameters. *African Health Sciences*, 19(2), 2140–2146. <https://doi.org/10.4314/ahs.v19i2>.
- [15] Björklund, A., Forkel, M., Picelli, S. et al. The heterogeneity of human CD127⁺ innate lymphoid cells revealed by single-cell RNA sequencing. *Nat Immunol* 17, 451–460 (2016). <https://doi.org/10.1038/ni.3368>
- [16] Han, X., Wang, R., Zhou, Y., et al. (2018). Mapping the mouse cell atlas by microwell-seq. *Cell*, 172(5), 1091–1107.e17. <https://doi.org/10.1016/j.cell.2018.02.001>
- [17] Zheng, G., Terry, J., Belgrader, P. et al. Massively parallel digital transcriptional profiling of single cells. *Nat Commun* 8, 14049 (2017). <https://doi.org/10.1038/ncomms14049>